Understanding Choice Intensity: A Poisson Mixture Model with Logit-based Random Utility Selective Mixing

نویسندگان

  • Martin Burda
  • Matthew Harding
  • Jerry Hausman
چکیده

In this paper we introduce a new Poisson mixture model for count panel data where the underlying Poisson process intensity is determined endogenously by consumer latent utility maximization over a set of choice alternatives. This formulation accommodates the choice and count in a single random utility framework with desirable theoretical properties. Individual heterogeneity is introduced through the random coefficient framework with a flexible semiparametric distribution. We deal with the analytical intractability of the resulting mixture by recasting the model as an embedding of infinite sequences of scaled moments of the mixing distribution, and newly derive their cumulant representations along with bounds on their rate of numerical convergence. We further develop an efficient recursive algorithm for fast evaluation of the model likelihood within a Bayesian Gibbs sampling scheme. We apply our model to a recent household panel of supermarket visit counts. We estimate the nonparametric density of three key variables of interest – price, driving distance, and total expenditure – while controlling for a range of consumer demographic characteristics. We use this econometric framework to assess the opportunity cost of time and analyze the interaction between store choice, trip frequency, household characteristics and store characteristics. JEL: C11, C13, C14, C15, C23, C25

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models

There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...

متن کامل

A Poisson mixture model of discrete choice

In this paper, we introduce a new Poisson mixture model for count panel data where the underlying Poisson process intensity is determined endogenously by consumer latent utility maximization over a set of choice alternatives. This formulation accommodates the choice and count in a single random utility framework with desirable theoretical properties. Individual heterogeneity is introduced throu...

متن کامل

On Nesting Location Choice Models Correctly: A Reply to Herger and McCorriston

As shown by Guimaraes, Figueiredo and Woodward (2003), a particular class of conditional logit models yield identical parameter estimates to a Poisson count data model. In Schmidheiny and Brülhart (2011), we have pointed out that the conditional logit model and the Poisson model can be seen as polar cases of a continuum of intermediate cases which emerge from a random utility nested logit model...

متن کامل

Fuzzy Random Utility Choice Models: The Case of Telecommuting Suitability

Random utility models have been widely used in many diverse fields. Considering utility as a random variable opened many new analytical doors to researchers in explaining behavioral phenomena. Introducing and incorporating the random error term into the utility function had several reasons, including accounting for unobserved variables. This paper incorporates fuzziness into random utility mode...

متن کامل

Working Paper Series Categorical Data Categorical Data

Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009